

Stanford ME218B:

Smart Product Design Lab

Hi-tech Indoor Ping-Pong Orbital Sumo

Pseudo code

2012.03.12

Team 3

Alves, Dimitri

Anderson, Ryan

Ploch, Chris

Yang, Yushi

Master State Machine: RobotMotionSM

InitRobotMotionSM

Assign ThisEvent to ES_Event

Save our priority

Assign ThisEvent Event type to ES_ENTRY

Start the Master State machine

Return true

End InitRobotMotionSM

PostRobotMotionSM

 Return MyPriority and ThisEvent

End PostRobotMotionSM

RunRobotMotionSM

 Assume no transitions are made

 Assign Next State to Current State

 Default to normal entry to new state

 Assume we are not consuming event

 Based on current state, switch through the following cases

 Case: if current state is WaitingState

 If an event is active

 Switch based on current event type

 Case: Beacon 1 is detected we are team BLUE

 Light Blue LED

 Consume this event

 Break of case Beacon 1 is detected

Case: Beacon 3 is detected we are team RED

 Light Red LED

 Consume this event

 Break of case Beacon 3 is detected

 Case: event is Game On from SPI

 Initialize one timer for total game on time (2 min)

 Initialize timer for total ball collecting time

 Start rotating the robot clockwise

 Initialize timer to record rotating to center time

 Next State is BallCollectingState

 Mark that we are taking a transition

 Consume this event

 Break of Game On event case

End switch cases statement

End if statement

Break of WaitingState

Case: if current state is BallCollectingState

 Call the during function to run RunBallCollectionSM

 If an event is active

 Switch based on current event type

 Case: Timeout

 if event is timeout from ROBOT_MOTION

 Start rotating the robot clockwise to look for beacon

 Next state is BallDumpingState

 Mark that we are taking a transition

 Break of timeout case

End switch cases statement

End if statement

Break of BallCollectingState

Case: if current state is BallDumpingState

 Call the during function to run RunBallDumpSM

 If an event is active

 Switch based on current event type

Case: If event is FinishDumping

 Next state is DefendingState

 Mark that we are taking a transition

 Break of FinishDumping case

Case: Timeout

 if event is timeout for 2 min game over

 Stop the robot

 Turn on both LEDs

 Next state is WaitingState

 Mark that we are taking a transition

 Break of timeout case

End switch cases statement

End if statement

Break of BallDumpingState

Case: if current state is BallDefendingState

 Call the during function to run RunBallDefenseSM

 If an event is active

 Switch based on current event type

Case: Timeout

 if event is timeout for 2 min game over

 Stop the robot

 Turn on both LEDs

 Next state is WaitingState

 Mark that we are taking a transition

 Break of timeout case

End switch cases statement

End if statement

Break of BallDefendingState

End of switch states

If we are making a transition

 Execute exit function for current state

 Modify state variable

 Execute entry function for new state

End if statement

Return ReturnEvent

End of RunRobotMotionSM

StartRobotMotionSM

Always start at WaitingState

call the entry function (if any) for the ENTRY_STATE

return nothing

end of StartRobotMotionSM

QueryRobotMotionSM

 Return Current State of the RobotMotionSM

End of QueryRobotMotionSM

DuringBallCollectingState

If event is ES_ENTRY

 Start BallCollectionSM

Else if event is ES_EXIT

 give the lower levels a chance to clean up first

Else

 Do the 'during' function for this state: run RunBallCollectionSM

End of DuringBallCollectingState

DuringBallDumpingState

If event is ES_ENTRY

 Start BallDumpSM

Else if event is ES_EXIT

 give the lower levels a chance to clean up first

Else

 Do the 'during' function for this state: run RunBallDumpSM

End of DuringBallDumpingState

DuringBallDefendingState

If event is ES_ENTRY

 Start BallDefenseSM

Else if event is ES_EXIT

 give the lower levels a chance to clean up first

 Exit function for BallDefendingState: Stop the robot

Else

 Do the 'during' function for this state: run RunBallDefenseSM

End of DuringBallDefendingState

Sub-level State Machine 1: BallCollectionSM

RunBallCollectionSM

 Assume no transition made

 Assign NextState to CurrentState

 Assume we are not consuming event

 Based on current state, switch through the following cases

 Case: If current state is RotatingToCenter

 If an event is active

 Switch based on current event type

 Case: timeout event

 If timeout is ball collection timer, then robot has rotate to center

 Start driving the robot forward

 Reinitialize timer to 'forward to center' time

 Next State will be DrivingToCenter State

 Mark that we are making a transition

Consume this event

 End of if timeout statement

 Break of case timeout

 End of if event is active statement

Break of RotatingToCenter

Case: If current state is DrivingToCenter

 If an event is active

 Switch based on current event type

 Case: timeout event

 If it is ball collection timer, then robot has driven to center

 Start rotating robot clockwise

 Reinitialize timer to '90 degrees rotation' time

 Next State will be RotatingCWToForward1 State

 Mark that we are making a transition

Consume this event

 End of if timeout statement

 Break of case timeout

 Case: LeftFrontBumpSensor triggered event

 Start rotating robot clockwise

 Reinitialize timer to '90 degrees rotation' time

 Next State will be RotatingCWToForward1 State

 Mark that we are making a transition

Consume this event

 Break of case LeftRearBumpSensor

 Case: RightFrontBumpSensor triggered event

 Start rotating robot clockwise

 Reinitialize timer to '90 degrees rotation' time

 Next State will be RotatingCWToForward1 State

 Mark that we are making a transition

Consume this event

 Break of case RightRearBumpSensor

 End of switch event type

 End of if event is active statement

Break of DrivingToCenter

Case: If current state is RotatingCWToForward1

 If an event is active

 Switch based on current event type

 Case: timeout event

 If it is ball collection timer, then robot is parallel to the wall

 Start driving the robot forward

 Reinitialize timer to 'center to wall' time

 Next State will be DrivingForwardToWall State

 Mark that we are making a transition

Consume this event

 End of if timeout statement

 Break of case timeout

 Case: LeftRearBumpSensor triggered event

 Start driving the robot forward

 Reinitialize timer to ' center to wall ' time

 Next State will be DrivingForwardToWall State

 Mark that we are making a transition

Consume this event

 Break of case LeftRearBumpSensor

 Case: RightRearBumpSensor triggered event

 Start driving the robot forward

 Reinitialize timer to ' center to wall ' time

 Next State will be DrivingForwardToWall State

 Mark that we are making a transition

Consume this event

 Break of case RightRearBumpSensor

 End of switch event type

 End of if event is active statement

Break of RotatingCWToForward1

Case: If current state is DrivingForwardToWall

 If an event is active

 Switch based on current event type

 Case: timeout event

 If it is ball collection timer, then robot has arrived to the wall

 Start driving the robot backward

 Reinitialize timer to 'backup to grab wall' time

 Next State will be PushingBackUp State

 Mark that we are making a transition

Consume this event

 End of if timeout statement

 Break of case timeout

 Case: RightFrontBumpSensor triggered event

 Start driving the robot backward

 Reinitialize timer to 'backup to grab wall' time

 Next State will be PushingBackUp State

 Mark that we are making a transition

Consume this event

 Break of case RightFrontBumpSensor triggered

 Case: LeftFrontBumpSensor triggered event

 Start driving the robot forward

 Reinitialize timer to ' backup to grab wall ' time

 Next State will be PushingBackUp State

 Mark that we are making a transition

Consume this event

 Break of case LeftFrontBumpSensor

 End of switch event type

 End of if event is active statement

Break of DrivingForwardToWall

Case: If current state is PushingBackUp

 If an event is active

 Switch based on current event type

 Case: timeout event

 If it is ball collection timer, then robot has done backing up

 Start rotating robot clockwise

 Reinitialize timer to '90 degrees rotation' time

 Next State will be PushingRotation State

 Mark that we are making a transition

Consume this event

 End of if timeout statement

 Break of case timeout

 End of switch event type

 End of if event is active statement

Break of PushingBackUp

Case: If current state is PushingRotation

 If an event is active

 Switch based on current event type

 Case: timeout event

 If it is ball collection timer, then robot has done rotating

 Start driving the robot backward on a radius

 Reinitialize timer for robot to 'grab the wall'

 Next State will be CollectingRotatingWall State

 Mark that we are making a transition

Consume this event

 End of if timeout statement

 Break of case timeout

 End of switch event type

 End of if event is active statement

Break of PushingRotation

Case: If current state is CollectingRotatingWall

 If an event is active

 Switch based on current event type

 Case: timeout event

 If it is ball collection timer, then robot has grabbed the wall

 Start driving the robot backward on a radius

 Reinitialize timer for ‘drive on radius’ time

 Next State will be DrivingOnRad1 State

 Mark that we are making a transition

Consume this event

 End of if timeout statement

 Break of case timeout

 End of switch event type

 End of if event is active statement

Break of CollectingRotatingWall

 Case: If current state is DrivingOnRad1

 If an event is active

 Switch based on current event type

 Case: timeout event

If it is ball collection timer, then robot has done driving on

a radius without triggering any of the front bump sensors

 Start driving the robot backward

 Reinitialize timer to 'random motion backup' time

 Next State will be RandomBallCollecting State

 Mark that we are making a transition

Consume this event

 End of if timeout statement

 Break of case timeout

 Case: RightFrontBumpSensor triggered event

 Start driving the robot backward

 Reinitialize timer to 'random motion backup' time

 Next State will be RandomBallCollecting State

 Mark that we are making a transition

Consume this event

 Break of case RightFrontBumpSensor triggered

 Case: RightUpperBumpSensor triggered event

 Start driving the robot backward

 Reinitialize timer to 'random motion backup' time

 Next State will be RandomBallCollecting State

 Mark that we are making a transition

Consume this event

 Break of case RightUpperBumpSensor

End of switch event type

 End of if event is active statement

Break of DrivingOnRad1

Case: If current state is RandomBallCollecting

 If an event is active

 Switch based on current event type

 Case: timeout event

If it is ball collection timer, then robot has done backing up

 Start rotating the robot

 Reinitialize timer to 'random motion rotation' time

Consume this event

 End of if timeout statement

 Break of case timeout

 Case: RightFrontBumpSensor triggered event

 Start driving the robot backward

 Reinitialize timer to 'random motion backup' time

 Consume this event

 Break of case RightFrontBumpSensor triggered

 Case: LeftFrontBumpSensor triggered event

 Start driving the robot backward

 Reinitialize timer to 'random motion backup' time

 Consume this event

 Break of case LeftFrontBumpSensor

End of switch event type

 End of if event is active statement

Break of DrivingOnRad1

End of switch states

If we are making a transition

 Execute exit function for current state

 Modify state variable

 Execute entry function for new state

End if statement

Return ReturnEvent

End of RunBallCollectionSM

StartBallCollectionSM

Always start on RotatingToCenter state if enter without history

call the entry function (if any) for the ENTRY_STATE

return nothing

end of StartBallCollectionSM

QueryBallCollectionSM

 Return Current State of BallCollectionSM

End of QueryBallCollectionSM

Sub-level State Machine 2: BallDumpSM

RunBallDumpSM

 Assume no transition made

 Assign NextState to CurrentState

 Assume we are not consuming event

 Based on current state, switch through the following cases

 Case: if current state is FindingBinToDump

 Query function OurAvailableBins() to know which bins are available

 If an event is active

 Switch based on current event type

 Case: event is 20msBeaconDetected

 If bin 1 is found to be an available bin

 Start driving the robot forward towards the beacon

 Set DefenseBin to be 1

 Next State will be DrivingForwardToDump State

 Mark that we are taking a transition

 Consume this event

 End if statement

 Break of 20msBeaconDetected case

 Case: event is 18msBeaconDetected

 If bin 2 is found to be an available bin

 Start driving the robot forward towards the beacon

 Set DefenseBin to be 2

 Next State will be DrivingForwardToDump State

 Mark that we are taking a transition

 Consume this event

 End if statement

 Break of 18msBeaconDetected case

 Case: event is 16msBeaconDetected

 If bin 3 is found to be an available bin

 Start driving the robot forward towards the beacon

 Set DefenseBin to be 3

 Next State will be DrivingForwardToDump State

 Mark that we are taking a transition

 Consume this event

 End if statement

 Break of 16msBeaconDetected case

Case: event is 14msBeaconDetected

 If bin 4 is found to be an available bin

 Start driving the robot forward towards the beacon

 Set DefenseBin to be 4

 Next State will be DrivingForwardToDump State

 Mark that we are taking a transition

 Consume this event

 End if statement

 Break of 14msBeaconDetected case

 End of switch event type

 End of if event is active statement

Break of FindingBinToDump

 Case: if current state is DrivingForwardToDump

 If an event is active

 Switch based on current event type

 Case: If event is LeftUpperBumpSensor, then robot has hit the

rotating wall, needs to look for available beacons again

 Start rotating the robot clockwise

 Next State will be FindingBinToDump State

 Mark that we are taking a transition

 Consume this event

 Break of LeftUpperBumpSensor case

 Case: If event is RightUpperBumpSensor, then robot has hit the

rotating wall, needs to look for available beacons again

 Start rotating the robot clockwise

 Next State will be FindingBinToDump State

 Mark that we are taking a transition

 Consume this event

 Break of RightUpperBumpSensor case

Case: if event is LeftFrontBumpSensor, then robot has hit the playing

field wall

 Initialize BALL_DUMP_TIMER to DUMP_BACKUP time

 Start backing up the robot

Record the left bump sensor to be the last bump sensor triggered

 Next State will be DumpBackUp State

 Mark that we are taking a transition

 Consume this event

Break of LeftFrontBumpSensor case

Case: if event is RightFrontBumpSensor, then robot has hit the playing

field wall

 Initialize BALL_DUMP_TIMER to DUMP_BACKUP time

 Start backing up the robot

Record the right bump sensor to be the last bump sensor

triggered

 Next State will be DumpBackUp State

 Mark that we are taking a transition

 Consume this event

Break of RightFrontBumpSensor case

End of switch event type

 End of if event is active statement

Break of DrivingForwardToDump

Case: if current state is DumpBackUp

If an event is active

 Switch based on current event type

 Case: If event is timeout

 If the left bump sensor is the last bump sensor triggered

 Reinitialize BALL_DUMP_TIMER to be DUMP_ADJUST time

 Start rotating the robot clockwise

Else if the right bump sensor is the last sensor triggered

 Reinitialize BALL_DUMP_TIMER to be DUMP_ADJUST time

 Start rotating the robot counter-clockwise

Initialize timer 5 to record DUMP_SWEEP time, last sweep along

the outer radius before dumping

Next State will be DumpSweep State

Mark that we are taking a transition

Consume this event

Break of timeout case

End of switch event type

 End of if event is active statement

Break of DumpBackUp

Case If current state is DumpSweep

 If an event is active

 Switch based on current event type

 Case: LeftUpperBumpSensor triggered

 If the left bump sensor is the last bump sensor triggered

 Start backing up the robot along the outer radius

 Else if the right bump sensor is the last bump sensor triggered

 Start backing up the robot along the outer radius

 Next State will be FindingTape State

 Mark that we are taking a transition

 Consume this event

 Break of LeftUpperBumpSensor triggered

Case: RightUpperBumpSensor triggered

 If the left bump sensor is the last bump sensor triggered

 Start backing up the robot along the outer radius

 Else if the right bump sensor is the last bump sensor triggered

 Start backing up the robot along the outer radius

 Next State will be FindingTape State

 Mark that we are taking a transition

 Consume this event

 Break of RightUpperBumpSensor triggered

Case: FrontTwoBumpSensor triggered

 If the left bump sensor is the last bump sensor triggered

 Start backing up the robot along the outer radius

 Else if the right bump sensor is the last bump sensor triggered

 Start backing up the robot along the outer radius

 Next State will be FindingTape State

 Mark that we are taking a transition

 Consume this event

 Break of FrontTwoBumpSensor triggered

 Case: if event is timeout event

 Only respond to the BALL_DUMP_TIMER event

 If the left bump sensor is the last bump sensor triggered

 Start driving the robot forward along the outer radius

 Else if the right bump sensor is the last bump sensor triggered

 Start driving the robot forward along the outer radius

 Only respond to timer 5 timeout event

If the left bump sensor is the last bump sensor triggered

 Start backing up the robot along the outer radius

 Else if the right bump sensor is the last bump sensor triggered

 Start backing up the robot along the outer radius

 Next State will be FindingTape State

 Mark that we are taking a transition

 Consume this event

Break of timeout event

End of switch event type

 End of if event is active statement

Break of DumpSweep

Case: if current state is FindingTape

 If an event is active

 Switch based on the current event type

 Case: if event is FrontTapeSensor detected

 If the left bump sensor is the last bump sensor triggered

 Start rotating the robot clockwise to align up with the tape

 Else if the right bump sensor is the last bump sensor triggered

 Start rotating the robot counter-clockwise to align up with tape

 Next State will be AlignTape State

 Mark that we are taking a transition

 Consume this event

 Break of FrontTapeSensor case

End of switch event type

 End of if event is active statement

Break of FindingTape

Case: if current state is AlignTape

 If an event is active

 Switch based on the current event type

 Case: if event is BackTapeSensor detected

 Reinitialize BALL_DUMP_TIMER to record DUMP_BACKUP time

 Start driving the robot backward

 Next State will be ReverseDriving State

 Mark that we are taking a transition

 Consume this event

 Break of BackTapeSensor case

End of switch event type

 End of if event is active statement

Break of AlignTape

Case: if current state is ReverseDriving

 If an event is active

 Switch based on the current event type

 Case: if event is RearTwoBumpSensor detected

 Reinitialize timer to wait for dumping all the balls

 Stop the robot for dump

 Next State will be BallDumping State

 Mark that we are taking a transition

 Consume this event

 Break of BackTapeSensor case

 Case: if event is LeftRearBumpSensor detected

Start reverse driving only the Right wheel so that both rear bump sensors

could be triggered

 Consume this event

 Break of LeftRearBumpSensor case

Case: if event is RightRearBumpSensor detected

Start reverse driving only the Left wheel so that both rear bump sensors

could be triggered

 Consume this event

 Break of RightRearBumpSensor case

 Case: if event is timeout

 Only respond to the BALL_DUMP_TIMER timeout events

 Stop the robot

 Turn off fan

 Reinitialize timer to wait for dumping all the balls

 Next State will be BallDumping State

 Mark that we are taking a transition

 Consume this event

 Break of Timeout case

End of switch event type

 End of if event is active statement

Break of ReverseDriving

Case: if current state is BallDumping

 If an event is active

 Switch based on the current event type

 Case: If event is Timeout

 If event is BALL_DUMP_TIMER timeout

 Start driving the robot forward for jerk motion

 Reinitialize timer 5 for forward jerk motion time

 Consume this event

 Else if event is Timer 5 Timeout

 Start driving the robot backward for jerk motion

 Initialize timer 6 to record backward jerk motion time

 Consume this event

 Else if event is Timer 6 Timeout

 Stop the robot

 Wait for 2 seconds to go into the defense state

Mark that we are taking a transition

Post the event EV_FinishDumping

 Break of timeout case

End of switch event type

 End of if event is active statement

 Break of BallDumping

End of switch states

If we are making a transition

 Execute exit function for current state

 Modify state variable

 Execute entry function for new state

End if statement

Return ReturnEvent

End of RunBallDumpSM

StartBallDumpSM

Always start on FindingBinToDump state if enter without history

call the entry function (if any) for the ENTRY_STATE

return nothing

end of StartBallDumpSM

QueryBallCollectionSM

 Return Current State of BallDumpSM

End of QueryBallDumpSM

Sub-level State Machine 3: BallDefenseSM

RunBallDumpSM

 Assume no transition made

 Assign NextState to CurrentState

 Assume we are not consuming event

 Based on current state, switch through the following cases

 Case: if current state is InitialDefensePosition

If an event is active

 Switch based on current event type

 Case: event is WallApproachCW

Drive the robot forward and slightly CW

Initialize timer so that times out when drive to edge

Next State will be DrivingForwardCW State

Mark that we are taking a transition

Consume this event

End of case WallApproachCW

Case: event is WallApproachCCW

Drive the robot forward and slightly CCW

Initialize timer so that times out when drive to edge

Next State will be DrivingForwardCCW State

Mark that we are taking a transition

Consume this event

End of case WallApproachCCW

End of switch event type

 End of if event is active statement

Break of InitialDefensePosition

Case: if current state is DrivingForwardCCW

If an event is active

 Switch based on current event type

 Case: event is timeout for BALL_DEFENSE_TIMER

Stop robot

Next State will be GuardLeftSide State

Mark that we are taking a transition

Consume this event

End of case timeout

End of switch event type

 End of if event is active statement

Break of DrivingForwardCCW

Case: if current state is DrivingForwardCW

If an event is active

 Switch based on current event type

 Case: event is timeout for BALL_DEFENSE_TIMER

Stop robot

Next State will be GuardingRightSide State

Mark that we are taking a transition

Consume this event

End of case timeout

End of switch event type

 End of if event is active statement

Break of DrivingForwardCW

Case: if current state is GuardingLeftSide

If an event is active

 Switch based on current event type

 Case: event is WallLeaveCW

Drive the robot reverse and slightly CW (i.e. Left wheel <

Right wheel)

Initialize timer so that times out when drive to initial

defense position

Next State will be DrivingReverseCW State

Mark that we are taking a transition

Consume this event

End of case WallLeaveCW

End of switch event type

 End of if event is active statement

Break of GuardingLeftSide

Case: if current state is GuardingRightSide

If an event is active

 Switch based on current event type

 Case: event is WallLeaveCCW

Drive the robot reverse and slightly CCW (i.e. Left wheel <

Right wheel)

Initialize timer so that times out when drive to initial

defense position

Next State will be DrivingReverseCCW State

Mark that we are taking a transition

Consume this event

End of case WallLeaveCCW

End of switch event type

 End of if event is active statement

Break of GuardingRightSide

Case: if current state is DrivingReverseCCW

If an event is active

 Switch based on current event type

 Case: event is timeout for BALL_DEFENSE_TIMER

Stop robot

Next State will be InitialDefensePosition State

Mark that we are taking a transition

Consume this event

End of case timeout

Case: event is RearTwoBumpSensor

Stop robot

Next State will be InitialDefensePosition State

Mark that we are taking a transition

Consume this event

End of case RearTwoBumpSensor

End of switch event type

 End of if event is active statement

Break of DrivingReverseCCW

Case: if current state is DrivingReverseCW

If an event is active

 Switch based on current event type

 Case: event is timeout for BALL_DEFENSE_TIMER

Stop robot

Next State will be InitialDefensePosition State

Mark that we are taking a transition

Consume this event

End of case timeout

Case: event is RearTwoBumpSensor

Stop robot

Next State will be InitialDefensePosition State

Mark that we are taking a transition

Consume this event

End of case RearTwoBumpSensor

End of switch event type

 End of if event is active statement

Break of DrivingReverseCW

End of switch states

If we are making a transition

 Execute exit function for current state

 Modify state variable

 Execute entry function for new state

End if statement

Return ReturnEvents

End of RunBallDefenseSM

StartBallDefenseSM

Always start on InitialDefensePosition state if enter without history

call the entry function (if any) for the ENTRY_STATE

return nothing

end of StartBallDefenseSM

QueryBallDefenseSM

 Return Current State of BallDefenseSM

End of QueryBallDefenseSM

State Machine: SPIFSM.c

InitSPIFSM

 Save my priority

 Put us into the InitSPIState

 Post the initial transition event

 If post event is true

 Return true

Else return false

End of InitSPIFSM

PostSPIFSM

 return ES_PostToService

end of PostSPIFSM

RunSPIFSM

 Define the last SPI reading

Define the new SPI reading

Define the state reading

Define the new state reading

Assume no errors

Assign array number

Assign counter for command sending

Switch based on the current state

 Case: If current state is InitSPIState

 Only respond to EF_Init

 Initialize FULL_READ_TIMER to SENDRECEIVE_TIME

 Now put the machine into the SendRecieve State

 Break of InitSPIState case

 Case: If current State is SendReceive

 Switch based on current event type

 Case: if event is timeout

 If timer is FULL_READ_TIMER

If transmit register is empty

Transmit data (query command) to master transmit register

 Switch command based on the array number

 Case 0: send AR_TOTAL_BALLS_ONE_SIDE

Case 1: send AR_BIN_1

Case 2: send AR_BIN_2

Case 3: send AR_BIN_3

Case 4: send AR_BIN_4

Case 5: send AR_WALL_ANGLE

End switch

 If transmit data flag is set, read the junk value

Re-initialize BYTE_DELAY_TIMER to send out 0x00 to

get real data

Else if timer is BYTE_DELAY_TIMER

 If transmit register is empty

 Send command 0x00

Re-initialize BYTE_DELAY_TIMER to read the real data

received

 Else if timer is RECEIVE_DELAY_TIMER

 Read the real receive register

Assign NewReading to NewStateReading

If Array number is 0, AR_TOTAL_BALLS_ONE_SIDE

 If current number of balls in the playing field is not 0

 If last number of balls in the playing field is 0

 Post event GameOn

Assign LastRading to NewReading

Assign StateReading to NewStateReading - 0x80

Else, Assign StateReading to NewStateReading – 1

Record StateReading to FieldStatus[] based on the current array number

Re-initialize FULL_READ_TIMER to send and recieve the next

command

counter = counter +1

End switch on ThisEvent.EventType in SendReceive state

Break of SendRecieve State

End switch on Current State

Assign CurrentState to NextState

Return ReturnEvent

End of RunSPIFSM

InitSPI

Set baud rate divisor to 0x77, the slowest baud rate

 Disable SPI interrupt

 SPI system enable

 Disable SPI transmit interrupt

 Set SPI master/slave mode select as 1

 Set SPI clock polarity to idel high

 Set SPI clock phase to sample even edges

Slave select output enable

Set Most Significant Bit first

Set MODFEN, mode fault enable, high

End of InitSPI

Other Modules:

DrivePWM.c module

DrivePWM_Init

Set Port U0 and U1 as output ports

Enable PWM on U0 and U1 on E128

First clear the Prescale clk

Set Presale as /4

Set polarity of Port U0 and U1

Set to use the Scaled clock

Set Scale for 500Hz

No center align enabled

Set Period to 100

Enable PWM for Port U0 and U1

End of DrivePWM_Init

DrivePWM_SetDutyCycle

 If the user defined motor is LEFT motor

 Set Duty Cycle of PWMDTY0

 Else if the user defined motor is LEFT motor

 Set Duty Cycle of PWMDTY1

End of DrivePWM_SetDutyCycle

DriveRobot

 Switch based on the user defined Movement

 Case Forward:

 Set Left Motor Dir pin low

Set Right Motor Dir pin high

Set Left Motor BRK pin low

Set Right Motor BRK pin low

Set Left Motor Duty cycle

Set Right Motor Duty cycle

 Break of case forward

Case Backward:

 Set Left Motor Dir pin high

Set Right Motor Dir pin low

Set Left Motor BRK pin low

Set Right Motor BRK pin low

Set Left Motor Duty cycle

Set Right Motor Duty cycle

 Break of case backward

Case clockwise:

 Set Left Motor Dir pin low

Set Right Motor Dir pin low

Set Left Motor BRK pin low

Set Right Motor BRK pin low

Set Left Motor Duty cycle

Set Right Motor Duty cycle

 Break of case clockwise

Case counter clockwise:

 Set Left Motor Dir pin high

Set Right Motor Dir pin high

Set Left Motor BRK pin low

Set Right Motor BRK pin low

Set Left Motor Duty cycle

Set Right Motor Duty cycle

 Break of case counter clockwise

Case stop:

 Set Left Motor Dir pin high

Set Right Motor Dir pin high

Set Left Motor BRK pin high

Set Right Motor BRK pin high

Set Left Motor Duty cycle

Set Right Motor Duty cycle

 Break of case stop

End of DriveRobot

Beacon Sensing module

InitBeaconDetectionTimer

 Set pin T0 as in input (Use TIM0_CLK4)

 Enable the timer system

Set prescale to M/128

Sets PT0 to IC4 (set bit = 0)

Enable IC4 interrupt (PT0)

Capture rising edges

Clear IC4 flag

Enable global interrupts

End of InitBeaconDetectionTimer

BeaconInputCapture

 Store period in local variable

 Update last edge reading

 Clear interrupt flag

 Post events based on uPeriod

 If uPeriod is within range of 20ms Beacon signal

 Post 20ms beacon detected event

If uPeriod is within range of 18ms Beacon signal

 Post 18ms beacon detected event

If uPeriod is within range of 16ms Beacon signal

 Post 16ms beacon detected event

If uPeriod is within range of 14ms Beacon signal

 Post 14ms beacon detected event

End of BeaconInputCapture

